Safer Streets Priority Finder (SSPF)

An opensource tool to estimate crash risk for pedestrians and bicyclists

Nan Jiang, PhD, PE, PMP

Data Science Practice Lead, Austin Office Interim Director

What are we trying to solve with SSPF?

- Vision Zero is a data-driven framework. Existing methods are very data-intensive and require technical expertise to use
- Need a tool for assessing safety priorities that
 - is open-source
 - is easy to use without complex GIS knowledge
 - goes beyond just crash history
 - can be linked to the planning process

Overview of SSPF

- Browser-based tool to estimate segment-level crash risk
- Accessible at <u>https://www.saferstreetspriorityfinder.com/</u>
- Funded by USDOT's Safety Data Initiative Grant
- Project Team
 - Toole Design
 - City of New Orleans
 - New Orleans Regional Transit Authority
 - University of New Orleans Transportation Institute

SAFER STREETS PRIORITY FINDER

WELCOME TO THE SAFER STREETS PRIORITY FINDER!

THE SAFER STREETS PRIORITY FINDER ENABLES YOU TO ANALYZE THE RISK TO VULNERABLE ROAD USERS (BICYCLISTS AND PEDESTRIANS) ON YOUR COMMUNITY'S ROADS.

ACCESS THE TOOL

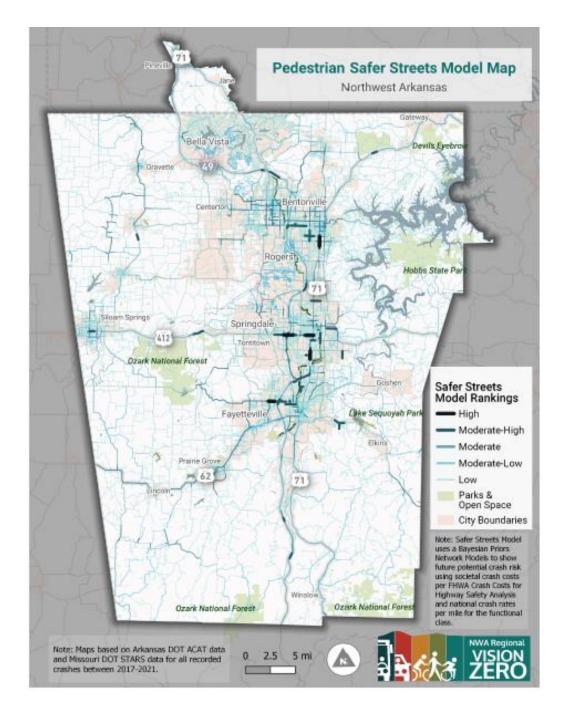
Overview of SSPF

2022 Excellence in Transportation Awards

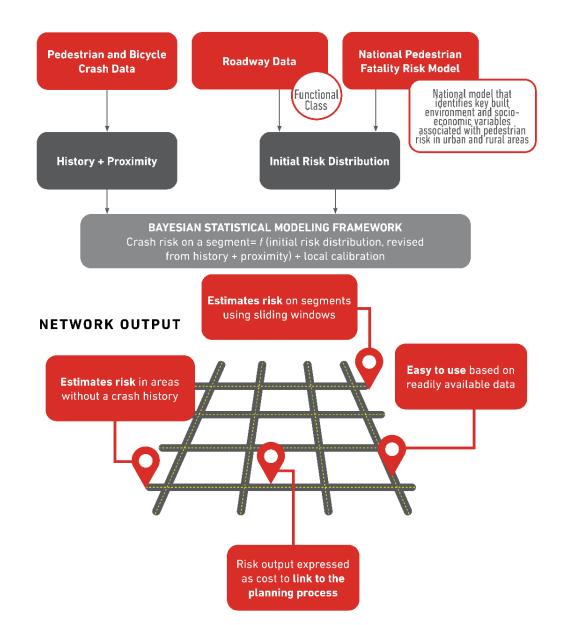
TRANSPORTATION ACHIEVEMENT AWARD – SAFETY TOOLE DESIGN FOR THE DEVELOPMENT AND USE OF THE SAFER

STREETS PRIORITY FINDER (SSPF)

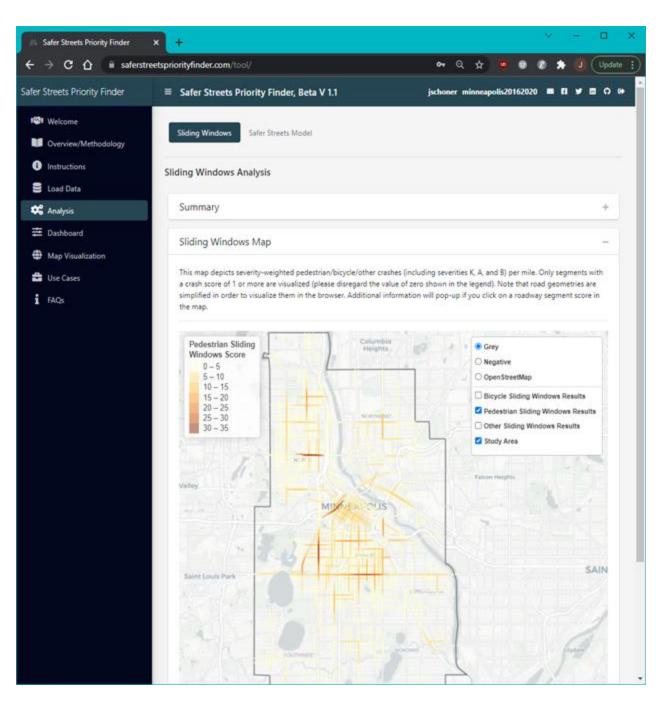
Toole Design has received a 2022 Transportation Achievement Award in the Safety Category for the Development and Use of the Safer Streets Priority Finder (SSPF), an open-source tool to conduct analysis using highly complex approaches for identifying unsafe locations to vulnerable road users. The



Usage of the Tool

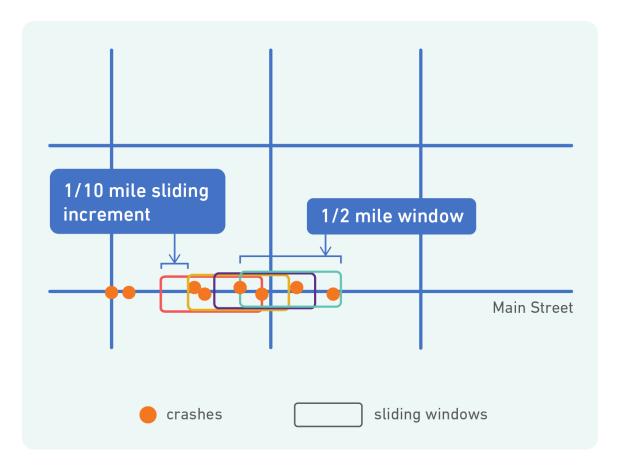

- 1045 distinct email addresses
- 1729 distinct studies
- Users are from all over the nation, including researchers, consultants, agency staff, etc.

Main Components


- Sliding Windows Analysis for identifying historic crash density
- Bayesian Model for
 estimating future crash
 risk

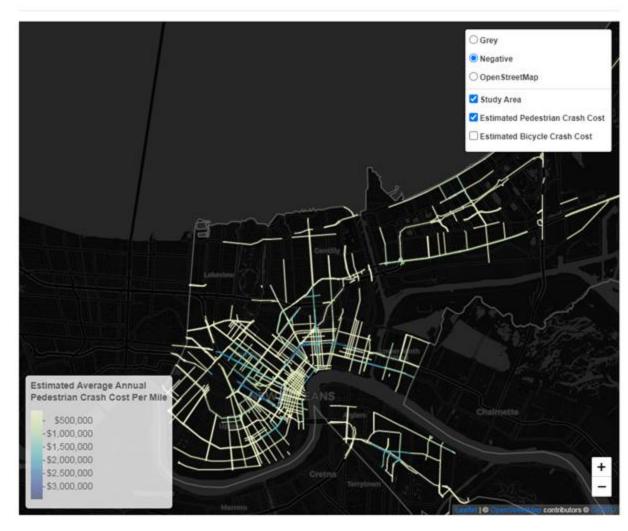
Sliding Windows Analysis

- This step uses users' crash data (or FARS data) to map severity-weighted crash density in sliding windows along the roadway network.
 - This is the "foundation" of a High Injury Network
- This looks only at historical crashes.
- This analysis is available for all modes.



Sliding Windows Analysis

- Measuring crash density along network corridors
- If many fatal and serious injury crashes occur in close sequence along the roadway, underlying roadway characteristics that are shared along the corridor are likely contributing to the safety problem
- Sliding Windows Analysis vs simple hotspot analysis:
 - Hotspot analysis may miss underlying roadway conditions since crashes are stretched along a length of roadway rather than concentrated in a single discrete location
 - An analysis looking at road segments between intersections may also miss the pattern spanning across multiple intersections in sequence


DESIGN

Safer Streets Model

- Bayesian model estimates possible future crash risk, informed by two key pieces of information and user-submitted crash data:
 - Estimate the number of crashes within a Census tract, from the Pilot Fatality Risk Map Model (a prior USDOT effort)
 - National average rate of fatal crashes per mile on a roadway based on its functional class
- Results are available as the cost of crashes along the roadway network.
- The model highlights sections of the roadway that have a heightened risk, even if a crash hasn't happened yet.

DESIGN

SSPF Results

- Online Dashboard
- PDF Report
- Detailed output shapefiles

EXPLORE

Create descriptive statistics related to your crash data.

INSPECT

Develop a Sliding Windows Analysis using historical crash data to inform a High Injury Network.

ASSESS

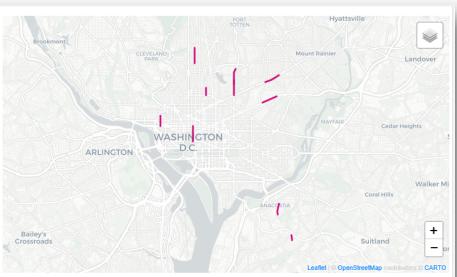
Develop a Safer Streets model to estimate risk along your road network, even in areas that haven't had any reported crashes recently.

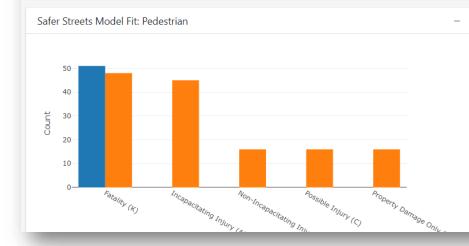
SSPF Results

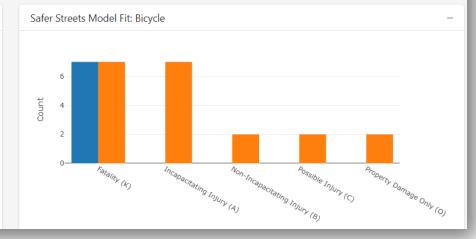
TOOLE

DESIGN

Summary Report Downloader		– Data Downlo	ader			-
Build Report Download Report Your report is ready! Click the 'Download Report' b	button to get your Safer Streets Priority Finder F	Study Area		•		
1 edestrian Crashes	7 Bicycle Crashes	65 Other Crashes		0	123 Total Crashes in Analysis	÷
mitted by Severity or Mode	0 Omitted, Outsid	le Study Area	12 Tc	23 otal Crashes		4
Crashes by Mode						-
Select Severity:	Crashes 🗘	Total Crashes 🔶 Percent of Total	÷			-
Select Severity: All Crashes	Crashes 1 Bicycle Crashes	7 5.7	÷			-
Select Severity: All Crashes - Select a Range:	Crashes 🗘		÷		1.5%	-
Select Severity: All Crashes Select a Range: 2015 2019	Crashes 1 Bicycle Crashes	7 5.7	¢		1.5%	-
Select Severity: All Crashes Select a Range: 2015 2019 2015 2018	Crashes 1 Bicycle Crashes 2 Other Crashes	7 5.7 65 52.8	÷		1.5%	
Select Severity: All Crashes Select a Range: 2015 2019	Crashes 1 Bicycle Crashes 2 Other Crashes 3 Pedestrian Crashes	7 5.7 65 52.8 51 41.5	¢		1.5%	


SSPF Results


Top Ten by Pedestrian Sliding Windows Score


This analysis uses the sliding window output but only lists the segments with the highest observed score.

	Name	÷	Functional Class	Crash Score 🔶
1	rhode island avenue northeast		Major Arterial	9
2	new york avenue northeast		Major Arterial	6
3	14th street northwest		Major Collector	6
4	north capitol street northwest		Major Arterial	6
5	north capitol street northeast		Major Arterial	6
6	22nd street southeast		Local Road	3
7	10th street northwest		Local Road	3
8	25th street northwest		Local Road	3
9	15th street northwest		Major Arterial	3
10	16th street southeast		Local Road	3

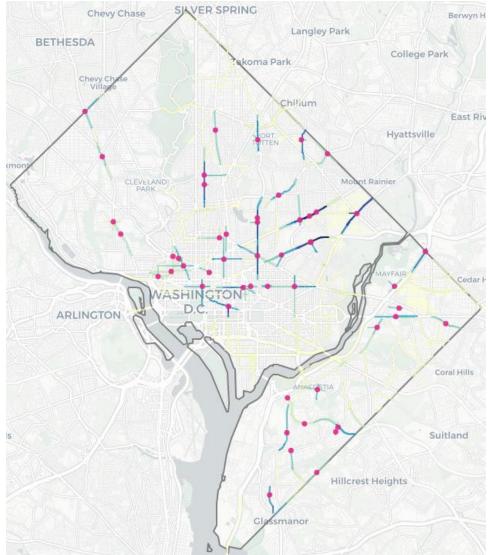
-

Limitations

- The current Safer Streets Model is ONLY for pedestrian and bicycle, not other modes
- Not suitable for large areas (larger than a county typically)
- Does not explicitly measure context like lanes, AADT, etc
- Poor quality crash data can give inaccurate results (errors in geocoding, mislabeled mode/severity, etc)

Next Steps – SSPF Phase II

- Develop tract-level fatal crash models for all three modes (motor vehicle, bicycle, and pedestrian)
- Update Bayesian models for all three modes to estimate segmentlevel crash risks
- Refine rural validation and calibration
- Improve the stability of model runs


Tool Feature Update

- Dashboard enhancement
- Customizable sliding window lengths
- Customizable results export and reports
- Additional input data validation
- ...

What can you use SSPF for?

- Leverage local data or use open public data
- Explore crash summary statistics in your study area
- Inspect historical crash trends on your network using Sliding Windows Analysis to build a High Injury Network
- Assess risk estimates along the network using the Safer Streets model, even in areas that haven't had any reported crashes recently

Input Needs

- Crashes
 - 5 years of data
 - Separated by mode (bike, ped, other)
 - Severity of injury (KABCO scale)
- Street Network
 - Functional class
 - Street Name

Study Area Boundary

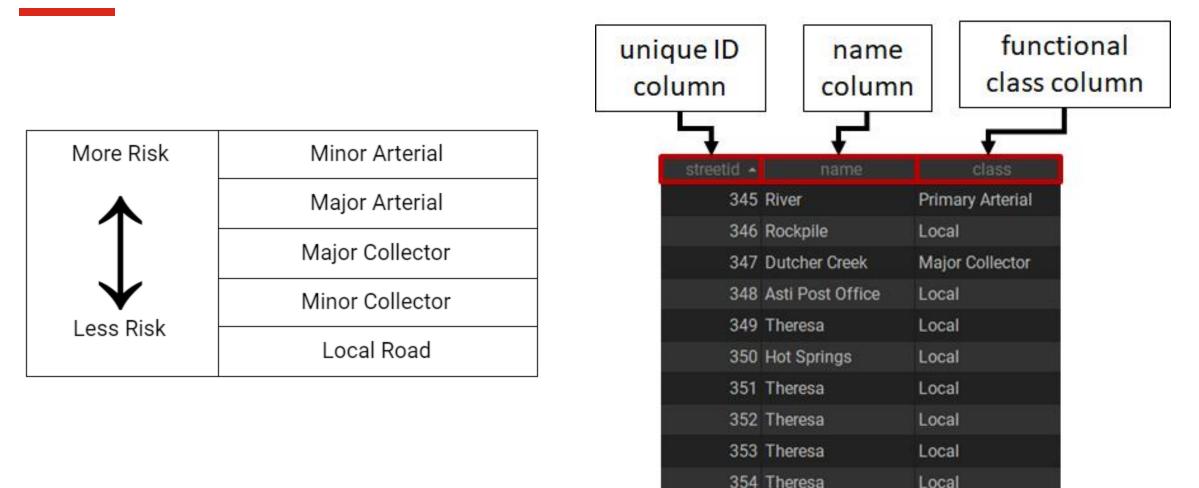
\equiv Safer Streets Priority Finder, Beta V 0.40
Load Study Area → Load Roads → Load Crashes → Confirm Input Data
Introduction
You can either choose from a US Census county/parish or upload your own study area. Instructions
Select a US Census county boundary or upload your own study area
Make a choice : Nationally Available County Boundary Local Study Area Boundary Select This Source

What if I don't have my own data?

- The tool has the following built-in data
 - Study area boundary county level only
 - Road Network OpenStreetMap data
 - Crashes FARS data
 - Limited to fatal crashes from 2015 to 2019
 - ✓ Results can be of very limited use with this data

Entering user input data

- Shapefile of study area boundaries
 - No larger than 1 county (at a time)
- Shapefile of crashes in your study area
 - Must have fields describing mode, severity, year, and unique ID
- Shapefile of roads in your study area
 - Must have fields describing functional class, roadway name, and unique ID


***TIP**: All shapefiles must be compressed into a zipped (.zip) folder before loading to SSPF website

Loading Local Study Area Boundary

afer Streets Priority Finder	≡ Safer Streets Priority Finder, Beta V 0.40
Welcome Overview/Methodology	Load Study Area → Load Roads → Load Crashes → Confirm Input Data
Instructions Load Data	Introduction
♣ Analysis➡ Dashboard	You can either choose from a US Census county/parish or upload your own study area. Instructions
Map VisualizationUse Cases	Select a US Census county boundary or upload your own study area
1 FAQs	Make a choice : Nationally Available County Boundary Select This Source

DESIGN

Loading Road Data

source: County of Sonoma, CA

Local

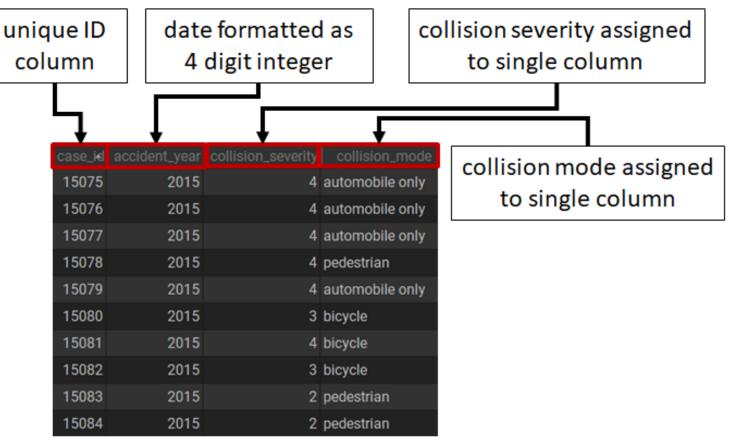
355 Theresa

Where do you get crash data?

- Texas: TxDOT CRIS Query Tool
 - <u>https://cris.dot.state.tx.us/public/Query</u> /app/home

• Other states:

DESIGN


• <u>https://www.saferstreetspriorityfinder.com/</u> <u>tool/crashdatasources/</u>

Crash Data Sources, by State

State	Crash Data Portal/Site	Geospatial Data Publicly Available	Notes
Alabama	AL Safety Portal	No	Dashboard and summary data only; spatial data available through CARE with signed dat use agreement
Alaska	<u>Alaska Highway Safety</u> Office - Motor Vehicle Crash Data	No	PDF reports only
Arizona	ADOT Arizona Motor Vehicle Crash Facts	No	Detailed data available through public record request
Arkansas	ACAT (Arkansas Crash Analytics Tool)	Limited	Fatal and Serious Injury crashes mapped - downloadability unclear
California	<u>SWITRS (Statewide</u> Integrated Traffic Records System)	Yes	Comprehensive relational database files available with registration
Colorado	Colorado DOT Crash Data	Limited	Custom data available upon request only; limited spatial data
Denver	Denver Open Data Catalog	Yes	Tabular or Shapefile downloads available
Connecticut	Connecticut Crash Data Repository	Yes	Detailed data available through query tool wiregistration
Delaware	DelDOT Dashboard	Limited	Crash data available by request with notarize data release agreement; request Portal unde development as of 2019
Florida	FDOT State Safety Office	Yes	Shapefiles and tabular data available via Op Data Hub
Georgia	<u>GDOT Crash Data</u> <u>Dashboard</u>	No	Detailed data available through public record request

Loading Crash Data

Injury Severity			
Fatal	K		
Incapacitating	Α		
Non-incapacitating	В		
Possible	С		
Property Damage Only	0		

source: Statewide Integrated Traffic Records System

Loading Crash Data

Please select the severity, mode, year, and crash report ID attributes from your crash data.

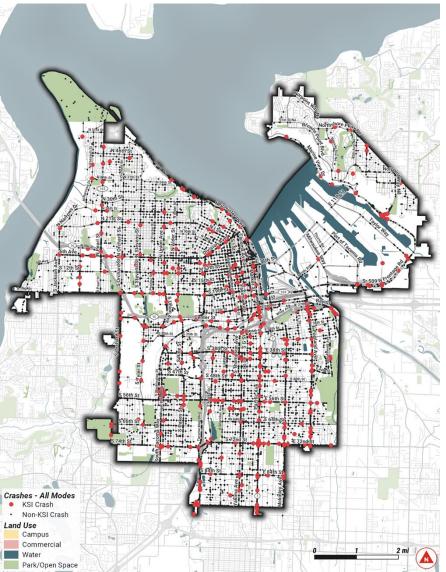
Select the Crash Severity Attribute	Select the Mode Attribute		
Select the attribute associated with the highest severity of the crash (i.e., Fatality, Incapacitating Injury, etc). Crash Severity severity	Select the attribute associated with the crash mode (i.e., Pedestrian, Bicyclist, Motor Vehicle). Crash Mode		
Select the Report ID Attribute	Select the attribute associated with the year		
This must be unique for each crash. Report ID crash_id	Select the attribute associated with the crash year. This must be a four-digit integer value. Year Attribute year		

Go Back	Next

Project types that can use SSPF

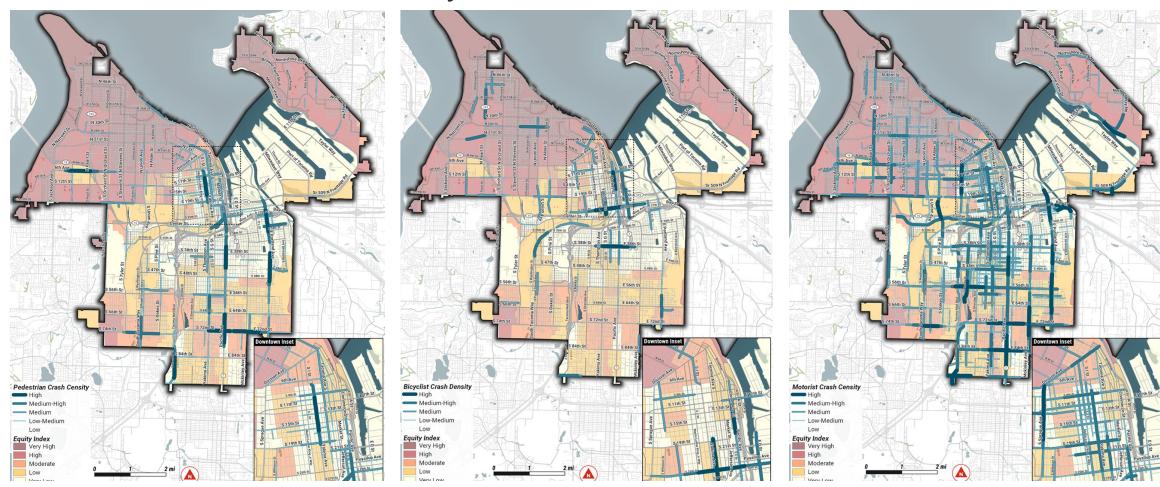

- Any project that has a pedestrian and/or bicycle safety component, such as
 - Vision Zero Action Plan or Local Road Safety Plan
 - An annual report of a Vision Zero Action Plan
 - Active Transportation Plan
 - Transportation Master Plan

TOOLE DESIGN


Use Case Example - City of New Orleans

- Build on previous efforts that identified hotspots and intersections
- Foundation for advancing Mayor's Moving New Orleans Action Plan safety vision via high-injury network and Vision Zero plan
- Strengthen data-driven project identification and funding decisions among agencies and partners
- Baseline for project impact evaluation
- Estimate of "no action" alternative costs at corridor level, citywide

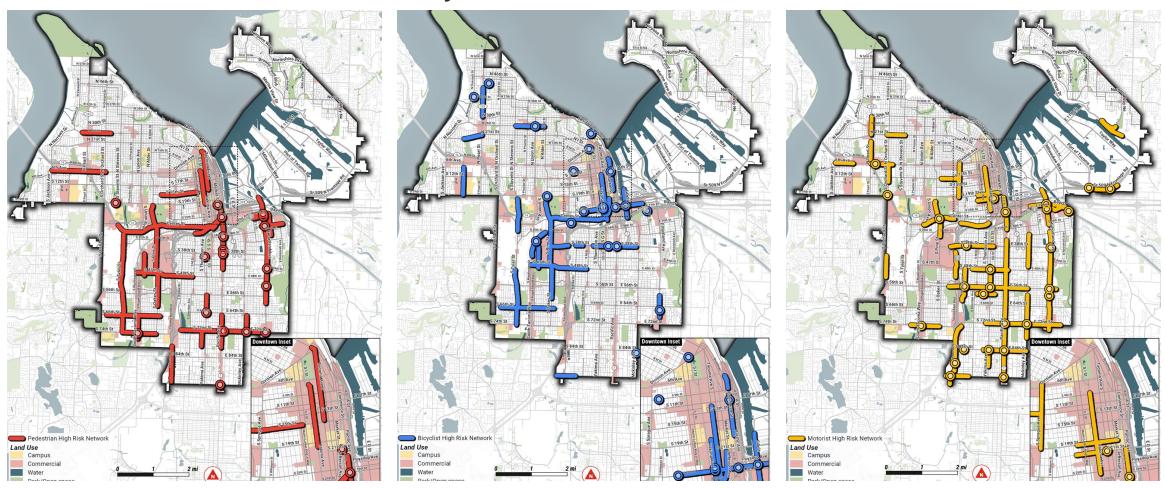
Use Case Example – Tacoma, Washington



Pedestrian

Bicyclist

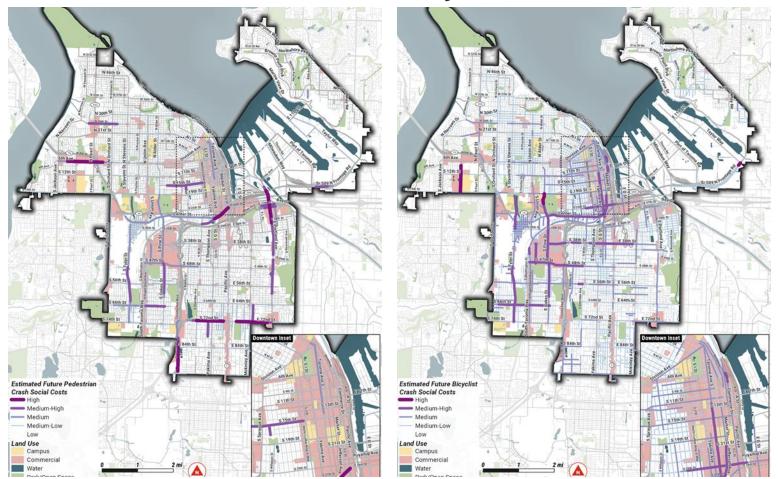
Motorist


Sliding Windows Analysis – Weighted Crashes per Mile

Pedestrian

Bicyclist

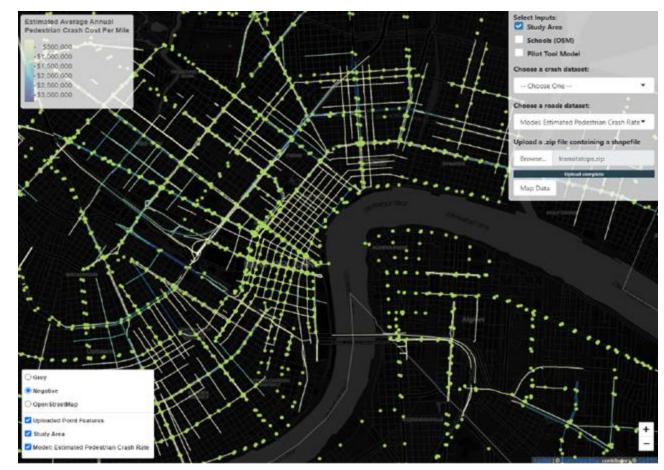
Motorist



High Injury Network

Pedestrian

Bicyclist



Safer Street Model – Estimated Future Crash Risk / High-Risk Network

Use Case Example - New Orleans RTA Transit System Rider Safety and Operator Training

- Map crashes against transit ridership areas of both high ridership and high crash frequency
- Prioritize systemic safety issues on transit routes, including crashes involving transit vehicles
- Outputs:
 - roadmap of high-priority areas to advocate for safety improvements for riders
 - framework for equitable investment and evaluation
 - analysis of systemic risks on transit routes & mitigation training for operators

TOOLE DESIGN

Nan Jiang, PhD, PE, PMP

Data Science Practice Lead, Austin Office Interim Director

njiang@tooledesign.com

Thank you

www.tooledesign.com