

Many advocates envy European

spaces

4 years of driver behavior,

 in the wild- SHRP2 NDS Video Tabulations
- SHRP2 Speed, acceleration, jerk
- Pre/post crash analysis
- Visual preference surveys

The Surprise Takeaway:

I wanted a magic bullet I could build...

It was never about what we build. It's all about seeing people.

Roads: Point Mass Physics

Adjusted for Human Factors

Streets: Social Psychology

Adjusted with physics if needed

Urban
bran Eme d $=$ Street
 Design

Guide

System 2:
Slow

Trained by learning and conversing

Logical, Sequential
Verbal
Understanding
This is one
that takes
tests

System 1:

 FastTrained by experience

Probabilistic
Monitoring
Self-preservation
This is one
you want driving

DWA: Driving Without Awareness

- Once we learn, we quit watching ourselves drive
- We are conscious, just not very...
- System 1 can see people

People on the brain

Limitations:

90 feet
All expressions

20 degrees
from center

Plan view:

- Interaction Possibilities:
- 90-135 feet
- Driver uses a 20 degree view

> Yields a 60-90' wide corridor

What about speed and Perceptual Narrowing?

Frequency Key:
$\bigcirc(0.0,0.2]$
(0.2, 0.4]
(0.4, 0.7]
(0.7, 1.0]

Rogers et. al (2005)

How far ahead are you looking?

Perceptual Narrowing

Width at eye height Visual Width of the Corridor

Visual Corridor Width

Processing Limitations:
 - Speed

- Too fast and there's not enough time to process someone is there

Where am I more likely to see people?

KEEPING
THEIR
ATTENTION

Maintaining attention requires novelty and change over time

Interruptions require reorienting

3 Factors:
 1. People

2. Close enough

3. Frequent change

Speed Prediction:

- Corridor width: visual width at eye height
- Can use building face width (different equation)
- People: Doorways per 100 feet
- Interruptions: Block Length

Free Flowing $85^{\text {th }}$ Percentile Speed (mph)

$85^{\text {th }}$ Percentile Speed in $\mathrm{mph}:\left(\mathrm{R}^{2}=0.615\right)$
-5.26

+ 9.9 Ln(Corridor Width at Eye Height)
- 1.58 (Doors/100')
+ 0.0068 (Block Length)

6. Workload dictates speed

Necessary but not sufficient:

38' width at eye height

6. Workload dictates speed

People

VS.
none

Access Management

TXDOT Access Management:

- Speed Management: 202

Table 1-2: Access Points and Free Flow Speed

- Losing a block means doubling the block length
- You'll add 10 mph going from 660^{\prime} to $1 / 2$ mile

Table 1-2: Access Points and Free Flow Speed	
Access Points and Free Flow Speed	
Access points per mile	Reduction in free flow speed, mph
0	0.0
10	2.5
20	5.0
30	7.5
40 or more	10

Think Context

